Gravitational Potential Energy Worksheet

- 1. What is the value of the gravitational potential energy of a 1.00 kg mass on the surface of the earth if the zero of potential energy is taken to be at infinity? $(-6.25 \times 10^7 \text{ J})$
- 2. What is the gravitational potential energy of the moon with respect to the earth if the zero of potential energy is taken to be at infinity? $(-7.7 \times 10^{28} J)$
- 3. What is the change in gravitational potential energy of a 1.00 kg mass that is carried from the surface of the earth to a distance of one earth radius above the surface? $(3.13 \times 10^7 J)$
- 4. What is the change in gravitational potential energy of a 5.00 kg mass that is carried from the surface of the earth to a distance of 0.25 earth's radius above the surface? $(6.26 \times 10^7 J)$
- 5. A metal slug is dropped from a height of $0.05r_m$ above the moon's surface. Find the speed with which the slug strikes the moon's surface. (518 m/s)
- 6. With what initial velocity must an object be projected vertically upward from the surface of Earth, in order to rise to a height equal to Earth's radius? $(7.9 \times 10^3 \text{ m/s})$
- 7. Calculate the change in gravitational potential energy for a 1 kg mass lifted 100 km above Earth's surface. What percentage error would have been made by using the equation $E_g = mgh$ and the value of g at Earth's surface? What does this tell you about the need for the more exact treatment in most normal Earth-bound problems? $(1.0 \times 10^6 J, 2\%)$
- 8. The distance from the sun to Earth varies from $1.47 \times 10^{11} m$, at perihelion (closest approach), to $1.52 \times 10^{11} m$ at aphelion (farthest distance away).
 - a. What is the maximum change in Earth's gravitational potential energy during one orbit of the sun? $(1.8 \times 10^{32} J)$
 - b. At what point in its orbit is Earth moving the fastest, and what is its maximum change in kinetic energy? (perihelion, $1.8 \times 10^{32} J$)