Gravitational Potential Energy Worksheet

1. What is the value of the gravitational potential energy of a 1.00 kg mass on the surface of the earth if the zero of potential energy is taken to be at infinity? $\left(-6.25 \times 10^{7} \mathrm{~J}\right)$
2. What is the gravitational potential energy of the moon with respect to the earth if the zero of potential energy is taken to be at infinity? $\left(-7.7 \times 10^{28} \mathrm{~J}\right)$
3. What is the change in gravitational potential energy of a 1.00 kg mass that is carried from the surface of the earth to a distance of one earth radius above the surface? $\left(3.13 \times 10^{7} \mathrm{~J}\right)$
4. What is the change in gravitational potential energy of a 5.00 kg mass that is carried from the surface of the earth to a distance of 0.25 earth's radius above the surface? $\left(6.26 \times 10^{7} \mathrm{~J}\right)$
5. A metal slug is dropped from a height of $0.05 r_{m}$ above the moon's surface. Find the speed with which the slug strikes the moon's surface. $(518 \mathrm{~m} / \mathrm{s})$
6. With what initial velocity must an object be projected vertically upward from the surface of Earth, in order to rise to a height equal to Earth's radius? $\left(7.9 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)$
7. Calculate the change in gravitational potential energy for a 1 kg mass lifted 100 km above Earth's surface. What percentage error would have been made by using the equation $E_{g}=m g h$ and the value of g at Earth's surface? What does this tell you about the need for the more exact treatment in most normal Earth-bound problems? $\left(1.0 \times 10^{6} \mathrm{~J}, 2 \%\right)$
8. The distance from the sun to Earth varies from $1.47 \times 10^{11} \mathrm{~m}$, at perihelion (closest approach), to $1.52 \times 10^{11} \mathrm{~m}$ at aphelion (farthest distance away).
a. What is the maximum change in Earth's gravitational potential energy during one orbit of the sun? $\left(1.8 \times 10^{32} \mathrm{~J}\right)$
b. At what point in its orbit is Earth moving the fastest, and what is its maximum change in kinetic energy? (perihelion, $1.8 \times 10^{32} \mathrm{~J}$)
